Methodology
The Cities with the Best Work-Life Balance 2021 ranking reveals the cities with the best
social, cultural and structural systems in place in order to provide their residents
with the most well-rounded work-life balance, in terms not only of work intensity, but
also livability, well-being and rights. As the third yearly iteration since 2019, and
the second since the pandemic began, the study also takes into account how the shift to
remote-working and the impact of Covid-19 has changed and continues to affect work-life
balance in major cities around the world.
After reviewing hundreds of global metropolises, a shortlist of 50 of in-demand cities
with sufficient, reliable, and relevant datasets were selected. This included cities
known for attracting professionals and families for their work opportunities and diverse
lifestyle offerings. As the third iteration of a continuous study, this index includes
10 more cities than in 2019.
This index is not designed to be a city livability index, nor is it intended to
highlight the best cities to work in. Instead, it is designed to be a guideline which
supports the fulfillment of residents’ lives by improving the aspects of life which help
relieve work-related stress and intensity.
Factors and Scoring
The study was divided into three categories - Work Intensity, Society and Institutions, City Livability - comprising the following 18 factors which contribute to work-life balance during and beyond the pandemic:
Work Intensity: Remote Jobs (%), Overworked Population (%), Minimum Vacations Offered (Days), Vacations Taken (Days), Unemployment (Score), Multiple Jobholders (%), Paid Parental Leave (Days)
Society and Institutions: Covid Support (Score), Healthcare (Score), Access to Mental Healthcare (Score), Inclusivity & Tolerance (Score).
City Livability: Affordability (Score), Happiness, Culture & Leisure (Score), City Safety (Score), Outdoor Spaces (Score), Air Quality (Score), Wellness and Fitness (Score), Covid Impact (Score)
Each factor consists of one or more indicators which were scored and averaged. The equation for scoring is as follows:
z-Score =
x - mean(X)
Standard deviation(X)
in short
x - μ
σ
For columns where a low value is better, the score is inverted such that a high score is always better:
z-Score inverted = -1 *
x - mean(X)
Standard deviation(X)
in short -1 *
x - μ
σ
Data is normalized to a [50-100] scale, with 100 being the best score. Therefore, the higher the score, the better the city ranks for that factor in comparison to the other cities in the index. The formula used is min-max normalisation:
score = (100 - 50) *
x - min(X)
max(X) - min(X)
+ 50
The final score was determined by calculating the sum of the weighted average score of all of the indicators. Below you can find a detailed description of each factor within the study, and the source used.
Work Intensity
Remote Jobs (%)
The quantity of jobs that are workable from home as a percentage of all jobs.
Locations with a greater share of teleworkable jobs (aka remote working) may provide
residents with the ability to comply with strict social distancing requirements while
also maintaining regular employment and income.
Data taken from the "How many jobs can be done at home?" (Dingle & Neiman, 2020) white
paper, which uses job classification survey data to identify jobs that can be
performed from home, and applies this to job statistics to estimate the share of all
jobs these jobs account for. US cities employ data at a Metropolitan Statistical Area
level, while country-level data was taken for all other cities. Where data was
unavailable, values for some countries were modeled using GDP per capita and
percentage of population with university degrees.
Sources: Dingel, J. I., & Neiman, B. (2020). How many jobs can be done at home?.
Journal of Public Economics, 189, 104235; World Bank – GDP per capita, PPP (current
international $), latest data; World Bank – Percentage of population age 15+ with
tertiary schooling. Completed Tertiary, latest data.
Overworked Population (%)
The percentage of full-time employees working more than 48 hours per working week. The
International Labour Organisation (ILO) recommends a workweek of 40-hours and considers
weekly work of over 48 hours "excessive".¹ The “Overworked Population” is considered to
be the percentage of full-time employees working more than 48 hours per working week.
For cities in the United States and in the European Union, average number of hours of
work was incorporated into the country-level data to approximate percentages on a
city-level. For all other cities, country-level data was used to evaluate the average
working hours per week.
Sources: ILO-STATISTICS – Labour force survey, latest available data; US Bureau of Labor
Statistics – Current Employment Statistics survey (State & Metro Area), 2019; EUROSTAT -
Average number of usual weekly hours of work in main job by sex, age and NUTS 2 regions.
Minimum Vacations Offered (Days)
The minimum number of compensated vacation days an employee is legally entitled to after
at least one year of service. Data was taken at a national level for a full-time,
five-day workweek (excluding public holidays). In the US, under the Fair Labor Standards
Act, no such federal or state-level regulations exist that require employers to pay
employees for time not worked, including holidays.² Despite this, time off agreements
are often negotiated between employer and employee. Data for US cities is based on the
average number of reported paid holiday days for a private industry employee after their
first year of service (10 days per annum).³
Sources: International Labour Organisation; European Commission – EURES Living and
Working Conditions; Thomson Reuters – Practical Law database; Various national labour
departments.
Vacations Taken (Days)
The average number of used paid vacation days offered to full-time employees in a single
year. City-level data was used where available. For US cities, data was calculated by
subtracting the unused vacation days from the average number of days offered. The
percentage of unused vacation days in the US was sourced at a state-level. For non-US
cities, country-level data was taken on the number of vacation days used.
Sources: US Travel Association – State-by-State Time Off, 2019; Expedia – Vacation
Deprivation study, 2018/17; UBS – Prices and Earnings study, 2018.
Unemployment (Score)
The unemployment rate for the metropolitan area or region in the first quarter of 2021.
This factor is expressed as a score where the higher the score, the lower the
unemployment rate. For cities that have not published their unemployment rate, the rate
was estimated using the quarter-to-quarter trend of the country. In rare instances,
national figures were used. Unemployed persons are considered those of the labour force
who are jobless, looking for a job, and available for work.
Sources: Official statistical websites of each metropolitan area/region/country.
Multiple Jobholders (%)
The percentage of employed people holding more than one job at any one time. The holding
of more than one job at a time can be a sign of engaging in precarious work, and is
often used as a financial coping tactic for those in economically vulnerable positions,
including minorities. Multiple job-holding can also expose workers to longer hours,
lower wages, and compromise their labour protections. The ILO has voiced concern about
incidence of multiple job-holding, describing it as a possible “sign of persons engaged
in irregular low-productive work, with an overlap to working poverty and an inability to
earn sufficient income on the main job alone.”⁴
Unfortunately, detailed geographical data on the number of multiple-jobholders is
underreported and not regularly published. However the latest available data where
possible was compiled from official statistics and independent research. All US and
Canadian data is at a state and province level, respectively, while other cities use
national data. Values for Hong Kong and Bangkok are modelled estimates using national
figures for the percentage of part-time workers as a proportion of the workforce.
Sources: Eurostat – Job-holder survey, 2018; Bureau of Labor Statistics –
Multiple-jobholding rates, 2015; Statistics Canada – Multiple jobholders, 2019;
Singapore Ministry of Manpower – Labour Force report, 2018; Australian Department of
Social Services – HILDA survey, 2019; Stats NZ – Household labour force survey, 2019;
Statistics Korea – Economically Active Population survey, 2019; The World Bank –
Malaysia Economic Monitor, 2019; Japan Labor Issues Journal – Atsushi Kawakami: “Who
Holds Multiple Jobs?...”, 2019; Latin American Perspectives – “Precarious Work in
Argentina 2003-2017”, 2020; United Nations – Economic and Social Council Brazil report,
2001.
Paid Parental Leave (Days)
The number of paid family leave days from work afforded to employees by law. The sum
comprises the legislated number of days for paid maternal, paternal and parental leave,
and reflects the number of days compensated, regardless of benefits provided or level of
compensation. At the federal level, the US does not mandate paid leave for parents, but
some states have recently passed relevant legislation (these include the states of
California, New York, Hawaii, and the District of Columbia). National data is used,
except for US cities, which use state-level data.
Sources: OECD – Employment statistics database, latest available; data, ILO – Maternity
and paternity at work study, 2014; Thomson Reuters – Practical Law, 2020; Official local
government websites.
Society and Institutions
Covid Support (Score)
The degree of income support provided by governments to workers affected by the economic
effects of Covid-19. This factor is expressed as a score where the higher the score, the
greater the support. It takes into account government programmes to replace income lost
due to Covid, length of unemployment benefits, consumer confidence, household spending
and general wage levels; as well as overall spending by governments to dampen the impact
of Covid on the economy. In addition, the level of covid cases and deaths was taken into
account.
Sources: Thomas Hale, Noam Angrist, Rafael Goldszmidt , Beatriz Kira , Anna Petherick,
Toby Phillips, Samuel Webster, Emily Cameron-Blake, Laura Hallas, Saptarshi Majumdar,
and Helen Tatlow. (2021). “A global panel database of pandemic policies (Oxford COVID-19
Government Response Tracker).” Nature Human Behaviour
https://doi.org/10.1038/s41562-021-01079-8; IMF - Fiscal Monitor Database of Country
Fiscal Measures in Response to the COVID-19 Pandemic (April, 2021): Above the line
spendings Additional - spending or foregone revenues - Non-health sector (as % of gdp);
OECD - Household Dashboard: Real Household Final Consumption expenditure per capita,
Consumer Confidence; year to year comparison (Q2 2020/Q2 2019 and Q3 2020/Q3 2019); OECD
- Benefits and wages database, SSA Country profiles, local authorities: Length of
unemployment benefits for a 30 year old single; no children; work prior to unemployment;
five years of contribution; average salary, full-time; contract terminated because of
shortage of work; ILO - Mean nominal monthly earnings; Worldometers - Total Cases per
million, total deaths per million.
Healthcare (Score)
The measure of a city’s healthcare system based on access, quality and satisfaction.
Country-level data was obtained from the Universal Health Coverage (UHC) index for
access and quality indicators, while US cities also incorporate state-level data from
the Health Access and Quality (HAQ) study. Additional data was taken from healthcare
access indexes developed by the World Health Organisation and the European Commission.
Satisfaction survey results were taken at a city level.
Sources: Lozano, R., Fullman, N., Mumford, J. E., Knight, M., Barthelemy, C. M.,
Abbafati, C., ... & Cárdenas, R. (2020). Measuring universal health coverage based on an
index of effective coverage of health services in 204 countries and territories,
1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The
Lancet, 396(10258), 1250-1284; Fullman, Nancy, et al. "Measuring performance on the
Healthcare Access and Quality Index for 195 countries and territories and selected
subnational locations: a systematic analysis from the Global Burden of Disease Study
2016." The Lancet 391.10136 (2018): 2236-2271; European Commission — DRMKC - INFORM Risk
Index (‘Access to health care’ indicator); 2021., WHO - World Health Data Platform,
Universal Health Coverage Index; latest data; Numbeo – Healthcare Index; data as of
April 2021.
Access to Mental Healthcare (Score)
The accessibility and effectiveness of governments in implementing mental health
policies aimed to care for individuals with mental health illnesses. This factor uses
national data on governance, access to treatment, and the environment necessary for
treatment. This factor also incorporates suicide rates and city-level survey data on
healthcare quality.
Sources: EIU/Jannsen – Asia- Pacific Mental Health Integration Index, 2016; EIU/Jannsen
– Europe Mental Health Integration Index, 2014; Institute for Health and Metrics
Evaluation – Health Access and Quality Index, 2016; Numbeo – Healthcare Index, 2020;
Local statistics departments.
Inclusivity & Tolerance (Score)
The degree to which a city supports gender and LGBT+ equality, inclusivity and tolerance through legislation and opportunity. The score combines the following ‘Gender Equality’ (degree of gender parity), as well as the ‘LGBT+’ (inclusiveness and tolerance) factors:
Gender Equality:
Gender equality scores were developed using data on the level of difference in
economic opportunity and participation, educational attainment, health, and political
empowerment between men and women. City-level data was used for US cities, with
country-level data used for non-US cities.
Sources: Economist – Glass Ceiling Index, 2020; World Economic Forum – Gender Gap
Index, 2020; Council on Foreign Relations – Women's Workplace Equality Index, 2020;
OECD – Social Institutions & Gender Index, 2019.
LGBT+
For LGBT+ scores, the comprehensiveness of equality and protection (an emphasis on work
rights) legislation, health access, as well as political representation for the LGBT+
community were examined. The percentage of the population that identifies as LGBT+ was
also included, as environments in which a higher number of citizens feel comfortable
openly identifying as a minority is also a potential indicator of a tolerant and
supportive community.
Sources: SPARTACUS – Gay Travel Index, 2020; Gallup – Daily Tracking polls, 2015/2017;
Out Leadership – State LGBT+ Business Climate Index, 2019; Local statistics departments,
latest available data.
City Livability
Affordability (Score)
Monthly living costs as a proportion of the average household income, after tax. A
basket of estimated monthly costs includes: rent, basic utilities costs, groceries,
internet connection, leisure activities, clothes, and eating out. A higher score
indicates a higher level of remaining monthly income (if any) after accounting for
these deductions.
Sources: OECD – Employment Database, 2018; Numbeo – Cost of Living Index, data as of
April, 2021.
Happiness, Culture & Leisure (Score)
The degree to which residents are able to enjoy their environment after office hours, measured through the average perceived level of happiness as well as the accessibility and variety of a city’s cultural and lifestyle offerings. The score combines both of the following ‘Happiness’ and ‘Culture & Leisure’ factors.
Happiness
Score includes the average perceived level of happiness at a city level. In the rare
absence of city-level data, national data was used. The score is calculated from
survey responses evaluating the perceived happiness with one’s own life, as well as
the degree of positive and negative effects a respondent experiences.
Sources: Sustainable Development Solutions Network – World Happiness Report, 2020;
Walethub – Happiest Cities, 2019.
Culture & Leisure
The vibrancy and variety of cultural and lifestyle offerings in a city. The score
combines cultural city rankings, the number of persons employed in the cultural and
creative industries, and the amount of leisure facilities and activities available, such
as the number of sports stadiums, restaurants, parks, shops, entertainment and nightlife
venues per capita. Cities with an exceptional number of activities received
supplementary points.
Note: all data collected for this factor reflects pre-pandemic conditions where cultural
and lifestyle offerings were available without restriction. This was designed to measure
the vibrancy of a city's offerings under normal circumstances, with the hope that the
existing cultural framework of a location will allow it to return to a similar level in
the future.
Source: US Bureau of Economic Analysis – State Arts and Cultural Production Employment,
2016; European Commission – Cultural and Creative Cities Monitor, 2019; Mori Foundation
– Global Power City Index, 2018; TimeOut – ‘48 best cities in the world in 2019’;
Wallethub – Funnest Cities in the US rankings, 2019; OSM Overpass Turbo API – Searches
included: bars; clubs; pubs; restaurants; cafes; galleries; museums; and cinemas, latest
data; TripAdvisor – Searches included: Nightlife, Museums, Concerts & Shows, Outdoor
Activities, Nature & Parks, latest data; World Stadiums – Database, latest data.
City Safety (Score)
The degree of safety provided by a city in more than a dozen key areas, including
environmental, social and infrastructural security. Indicators include statistics on
injuries and fatalities, damage caused at an economic level, public opinion data, and
data on the vulnerability of a location to particular hazards.
Sources: Germanwatch – Global Climate Risk Index, 2021/2020; United Nations Office on
Drugs and Crime – database; Economist Intelligence Unit – Safe Cities 2019; European
Commission/Disaster Risk Management Knowledge Centre – INFORM RISK report 2021; Igarape
Institute – Fragile Cities index, 2017; Numbeo - Crime Index; Vision of Humanity –
Global Peace Index, 2020; World Health Organisation - Global Health Observatory
database, latest available data.
Green Spaces and Weather (Score)
The prevalence and accessibility of a city’s urban green infrastructure as a score,
including its proximity to residents and the percentage of land allocated to green
space. Data on weather and daylight conditions that could affect the use of public
outdoor spaces was also incorporated. This includes average temperatures, the annual
number of rainy days, annual sunshine hours, and cloudlessness.
Significant weighting is placed on the green spaces indicator, as the existence of
favourable weather alone is not a condition for a good score in this section. Data is
collected at a city level.
Sources: United States Forest Service – iTree survey tool; The Trust for Public Land –
ParkScore index, 2020; OECD – Green area survey, 2018; European Environmental Agency –
Urban green infrastructure database, 2017; Weather Spark – Weather analysis data, 2020.
Air Quality (Score)
Annual median particulate matter (PM2.5/PM10) pollution for the year 2019, represented
as a score. Data from pre-pandemic conditions was used in order to assess a city’s air
quality under normal circumstances, with a view that pollution levels may return to
similar levels in the future should measures not be taken to reduce them.
Daily average data was taken across all days of a single year, with the median pollution
level representing the overall score. Data was taken at a city level.
Sources: AQICN – Air Quality Index historical database, 2019; World Health Organisation
– Global Ambient Air Quality Database, 2018.
Wellness and Fitness (Score)
The general state of a community’s physical fitness and health as represented by a
population’s average life expectancy, as well as levels of inactivity, obesity, and the
number of fitness studios and gyms per capita. National data was used for life
expectancy at birth, while US cities use city-level data. Adult obesity rates and the
prevalence of physical inactivity were taken at a national level, with US cities using
state level data. Data on the number of gyms per capita is taken at a city level.
Sources: World Health Organisation – Global Health Observatory data repository, latest
data; US Center for Disease Control and Prevention – Adult Physical Inactivity
Prevalence, 2020; Opportunity Insights – US life expectancy data, 2016; The State of
Childhood Obesity – Adult Obesity Rates, 2019; OSM Overpass Turbo API – Searches
included: ‘leisure=fitness_centre’ and ‘leisure=sports_centre’.
COVID Impact (Score)
The degree of social and economic impact on account of a location’s Covid-19-related
response. This factor is expressed as a score where the higher the score, the lower the
impact. Three dimensions of the impact were taken into account: public health, economic
and social. The impact on public health is quantified through cases and deaths relative
to population; the impact on economy through year-on-year GDP growth in 2020 and 2021;
and the impact on society through the severity of limiting measures put in place to
contain the pandemic, as well as changes in mobility patterns as a measure of the effect
of these restrictions.
Sources: Oxford COVID-19 Government Response Tracker, International Monetary Fund; Apple
– Covid-19 Mobility Trends Reports.